

Correlation between Predicted Maximal Oxygen Uptake (VO₂ Max) from the Six-Minute Walk Test with Reaction Time in Male Security Guards

Amira Ismi Noor, Dicky Soehardiman, Feni Fitriani Taufik

Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Persahabatan Hospital, Jakarta, Indonesia

Abstract

Background: Reaction time, the interval between stimulus and motor response, reflects alertness and is critical in professions such as security guards. On the other hand, a measurement of cardiorespiratory fitness using maximal oxygen uptake (VO_2 max) as a standard has been linked to improvements in cognitive performance. Therefore, this study examined the relationship between predicted VO_2 max values from the six-minute walk test and reaction time in security guards.

Methods: A cross-sectional study was conducted among 33 male security guards at Persahabatan National Respiratory Center between October and November 2024. Participants completed physical activity questionnaires, the six-minute walk test, and audio-visual reaction time assessments. Analyzed using Pearson's test if both variables were normally distributed, or Spearman's if both variables were not normally distributed.

Results: The predicted VO₂ max was 17.9 (10.3–24.6) ml/kg/min (metabolic equivalents/METs: 5.2 ± 0.8). Body mass index significantly influenced VO₂ max (P=0.005). Auditory reaction time was considerably faster than visual reaction time (172.6 \pm 25.7 ms vs. 199.8 \pm 33.1 ms; P<0.001). A weak negative correlation and statistically significant result were found in predicted VO₂ max and visual reaction time (r = -0.340; P=0.048), but not significant with auditory reaction time (r = -0.245; P=0.169).

Conclusion: The predicted VO_2 max was not strongly associated with visual reaction time among security guards.

Keywords: cardiorespiratory fitness, maximal oxygen uptake, reaction time, VO₂ max

Corresponding Author:

Amira Ismi Noor | Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Persahabatan Hospital, Jakarta, Indonesia | amiraisminoor@yahoo.com

> Submitted: September 3rd, 2024 Accepted: November 6th, 2025 Published: December 1st, 2025

J Respirol Indones. 2025 Vol. 45 No.4: 288–95 https://doi.org/10.36497/jri.v45i4.1015

Creative Commons
Attribution-ShareAlike 4.0
International License

INTRODUCTION

A reaction refers to a deliberate and conscious act triggered by an external stimulus. The duration between the stimulus and the resulting physical action is termed reaction time. It represents the total duration required for an individual to perceive an external stimulus, process the information, make an appropriate decision, and initiate a motor response. Reaction time is critical to everyday functioning and relies on integrated sensory input, cognitive processing, and motor performance.

Reaction time can be deliberately trained. Engaging in physical activity and exercise can enhance the underlying processes that influence reaction time. 4.5 Therefore, it plays a central role in determining one's level of alertness, particularly in professions where rapid response is vital, such as

drivers, athletes, pilots, military personnel, doctors, nurses, and security guards.³ As an example, security guards are trained to assess situations swiftly and accurately and also deliver appropriate responses. Their response speed is often dependent on the urgency of the situation.⁶

Reaction time has been shown to be affected by a wide array of factors to include such as sex, age, physical fitness, mental fatigue, attentional interference, alcohol intake, personality characteristics, the specific limb engaged in testing, circadian fluctuations, and the sensory stimulus (e.g., auditory vs. visual). On the factor of physical fitness, persistent low oxygen levels and systemic inflammation may provoke muscle weakness, cognitive impairment, and neurological abnormalities. This thereby adversely impacts motor functions such as physical activity, balance, posture, and coordination.⁷ The consequence is that reaction time becomes longer and performance decreases.^{8,9}

Therefore, oxygen levels in the body must be maximally taken up. Maximal oxygen uptake (VO₂ max) is a measure of the cardiorespiratory system's capacity to take in, transport, and utilize oxygen in the mitochondria of active muscles to meet the energy demands of contraction. It is a key indicator of cardiorespiratory fitness, commonly used across populations ranging from athletes to sedentary individuals and patients with various medical conditions. ^{10,11}

Furthermore, higher cardiorespiratory fitness has been linked to better cognitive performance in both younger and older adults.^{12–14} However, most reaction time tests have low specificity, meaning they often fail to accurately reflect an individual's ability to respond rapidly in profession-specific contexts.¹⁵ While many studies focus on athletes, limited research has explored reaction time in security personnel.

Therefore, the present study aims to investigate the correlation between predicted VO₂ max obtained from the six-minute walk test and reaction time in male security guards.

METHODS

This cross-sectional analytical study was conducted at Persahabatan National Respiratory Center Hospital, Jakarta, from October to November 2024. Ethical approval was obtained from the Health Research Ethics Committee of Persahabatan National Respiratory Center Hospital (Approval No. 0222/KEPK-RSUPP/10/2024). The study involved 33 active male security guards selected based on predefined inclusion and exclusion criteria using a correlation-based sample size calculation.

Eligible participants were male security guards aged 20–55 years currently employed at the hospital who provided written informed consent and agreed to participate fully in the study. Exclusion criteria include a history of cerebral disorders (e.g., head trauma, stroke, encephalitis, meningitis); use of antidepressants, antihistamines, or beta-blockers

with anxiolytic effects (e.g., propranolol, bisoprolol); illicit substances; alcohol; stimulants such as caffeine; and a history of myocardial infarction or unstable angina.

Data collection was carried out on non-working days. The researcher introduced the study objectives, benefits, and participant eligibility criteria and obtained written informed consent. Participants completed a demographic data form and the Global Physical Activity Questionnaire (GPAQ) and underwent a physical examination. Reaction time was measured using the L77 Lakassidaya reaction time device, which yields two measurement results are visual reaction time and auditory reaction time. Followed by the six-minute walk test to estimate maximal oxygen uptake (VO2 max). The prediction values for VO2 max were measured by Nury's formula: 16

```
(0,053 total distance<sub>meter</sub>) + (0,22 age<sub>years</sub>) + (0,032 height<sub>centimeter</sub>) - (0,164 weight<sub>kilogram</sub>) - (2,228 gender<sub>male=0, female=1</sub>) - 2,287.
```

Figure 1. The formula for maximum VO₂

All collected data were analyzed using IBM SPSS Statistics for Windows, Version 26.0. The correlation between predicted VO_2 max and reaction time was assessed using Pearson's test if both variables were normally distributed, or Spearman's rank correlation test if at least one variable was not normally distributed. The hypothesis testing results were reported in terms of values of P (with significance set at P<0.05) and the correlation coefficient (r), with a 95% confidence interval.

RESULTS

A total of 35 male participants provided written informed consent; however, two were excluded—one due to a history of ischemic stroke and another due to antihistamine use, resulting in 33 subjects participating. Both the six-minute walk test and the reaction time assessment were conducted on non-working days or holidays.

The subjects shared similar baseline characteristics, with a median age of 41 years

(range: 22–51 years). Smoking status was a notable characteristic. The majority of participants were active smokers (90.9%), primarily in the light Brinkman Index category (60.6%), with the rest in the moderate category (30.3%). A small proportion were former smokers (6.1%) or non-smokers (3%).

Based on body mass index (BMI), most participants were classified as overweight (60.6%) or obese (15.2%), while 24.2% had a normal BMI. Physical activity levels, assessed using the GPAQ, indicated that the majority of participants (63.6%) had a moderate level of physical activity, equivalent to 600–1499 metabolic equivalents (MET)-minutes per week. Complete data is provided in Table 1.

Table 1. Sample characteristics (n=33)

Table 1. Sample characteristics (n=33)		
Variables	n	%
Age, years (median [min-max])	41 (22–51)	
Level of security training		
Basic	30	90.9
Intermediate	3	9.1
Advanced	0	0.0
Years of service		
New (0-5 years)	30	90.9
Moderate (6–10 years)	1	3.0
Long-term (>10 years)	2	6.1
Smoking status		
Non-smokers	1	3.0
Former smoker	2	6.1
Active smoker	30	90.9
Brinkman Index		
Light	20	60.6
Moderate	10	30.3
Heavy	0	0.0
History of hypertension		
Yes	3	9.1
No	3	90.9
Height, cm (mean±SD)	169.3±3.8	
Weight, kg (median [min-max])	75 (63–110)	
Body Mass Index (BMI), (mean±SD)	27.5±3.7	
Normal (18.5–24.9)	8	24.4
Overweight (25.0–29.9)	20	60.6
Obese (≥30.0)	5	15.2
Physical activity level (GPAQ)		
Low	7	21.2
Moderate	21	63.6
High	5	15.2
· · · · · ·		

The mean six-minute walk distance (6MWD) was 515.3 ± 38.7 meters, translating to a predicted VO₂ max of 17.9 (10.3-24.6) ml/kg/min calculated using Nury's formula. The mean MET value for all

subjects was 5.2 ± 0.8 . Bivariate analysis was conducted to identify factors associated with predicted VO₂ max (Table 2). Variables showing P<0.20—BMI and physical activity level—were included in the multivariate analysis using linear regression.

Table 2. Bivariate analysis of subjects' characteristics associated with predicted VO₂ max

Variables	Predicted VO ₂ max (ml/kg/minute)	P
Age	17.9 (10.3–24.6)	0.653ª
Smoking status		
Non-smokers and former smokers	17.2 (15.4–24.6)	0.977 ^b
Active smoker	18 (10.4–22.7)	
History of hypertension		
Yes	20.6 (17.2–21)	0.2010
No	17.9 (10.3–24.6)	0.381°
Body Mass Index (BMI)		
Normal	19.9±2.4	
Overweight	18.6±2.4	0.001^{d}
Obese	14.4±2.6	
Physical activity level (GPAQ)	
Low	17.9 (17–22.4)	
Moderate	17.5 (10.3–24.7)	0.067 ^b
High	20.6 (15.4–22.7)	

Note: ^aSpearman test; ^bMann-Whitney test; ^cANOVA one-way; ^dKruskal-Wallis test

Age was retained in the model due to its known biological influence on oxygen uptake. Multivariate analysis (Table 3) revealed that BMI was the only variable significantly associated with predicted VO_2 max (P=0.005).

Table 3. Multivariate analysis of subjects' characteristics associated with predicted VO₂ max

associated with predicted VO ₂ max				
Variables	β	SE	CI 95%	P
Constant	25.159	3.658	17.677–32.641	
Age	0.011	0.058	-0.107-0.130	0.849
BMI	-2.506	0.831	-4.2050.807	0.005*
Physical	0.14	0.817	-1.656–1.684	0.986

Note: Linear regression test; *significant if *P*<0.05; CI 95%=95% Confidence Interval; Adjusted R square = 27.4%

Based on the reaction time measure, both visual reaction time and auditory reaction time were obtained an average visual reaction time for all subjects was 199.8±33.1 ms. Whereas the mean auditory reaction time was 172.6±25.7 ms (Table 4). Pearson's test showed a statistically significant difference between reaction times with auditory versus visual stimuli (*P*<0.001).

Table 4. Reaction time examination results (n=33)

Reaction Time	Mean±SD	P
Visual (ms)	199.8±33.1	<0.001
Auditory (ms)	172.6±25.7	10.001

Table 5 showed a negative correlation between predicted VO_2 max and visual reaction time (r = -0.340; P=0.048), with a weak strength, but statistically significant. A negative correlation was also found between predicted VO_2 max and auditory reaction time (r = -0.245), but this result was not statistically significant (P=0.169).

Table 5. Correlation between predicted VO₂ max and reaction time

Reaction Time	Predicted VO ₂ max	
Reaction Time	Correlation Coefficient (r)	Р
Visual	-0.340	0.048*
Auditory	-0.245	0.169

Note: Pearson test; *significant if P < 0.05

DISCUSSION

The study involved 33 participants with a mean age of 41 years (range: 22–51). This aligns with Jovanović et al, who reported a mean age of 45.6 years among Serbian security officers, and Malavia et al who reported a younger average of 31 years. ^{17,18} VO₂ max typically declines with age due to reductions in maximal heart rate and cardiac output. ¹⁹

In terms of smoking status, 90.9% were active smokers, mostly with light to moderate Brinkman Index scores. This contrasts with Godinho et al, where 89.5% were non-smokers.²⁰ Smoking has been associated with reduced VO₂ max, even at light to moderate levels.^{21,22}

Only 9.1% had a history of hypertension, with no other comorbidities reported (e.g., chronic obstructive pulmonary disease [COPD], asthma, diabetes). Prior studies have noted higher cardiovascular risks among security officers, attributed to stress, smoking, irregular shifts, and low physical activity. Tower VO₂ max is inversely related to higher blood pressure. 22

The mean BMI was 27.5±3.7 kg/m², with 60.6% overweight and 15.2% obese. Obesity is linked to cardiopulmonary diseases and higher mortality. Similar findings were reported by Pongen et al in Indian security officers, despite adequate physical fitness by step test measures.²³

Using the GPAQ, 63.6% had moderate physical activity, defined as achieving 600–1499 MET-min/week. This matches Malavia and Shah, who found 44% of security officers had moderate activity. 18 GPAQ classifies physical activity across work, transportation, and recreation domains, with MET scores calculated per domain.

From the 6MWD calculation obtained the mean is 515.3 ± 38.7 m, so the predicted VO₂ max based on Nury's formula is 17.9 (10.3-24.6) mL/kg/min. According to cardiorespiratory fitness classifications, this value falls within the poor category for both men and women aged 40-49 years.²⁴ The Nury formula is preferred over the simpler Cahalin formula for Indonesian populations, due to its incorporation of sex, age, height, and weight, which account for ethnic physiological differences.¹⁶

Comparable results were observed in Santausa's study, with a result of 19.8±3.8 ml/kg/min. It's likely influenced by a predominantly female sample likely influenced.²⁵ Different from Malavia and Shah, who used the Chester step test, reported a much higher VO₂ max (60.6±11.8 ml/kg/min), and Buttar et al who used direct measurement among healthy adults.^{18,26}

Meanwhile, COPD patients showed a much lower range of 14.14 ml/kg/min.²⁷ The corresponding MET value from predicted VO₂ max was 5.2±0.8, lower than general fitness standards.²⁵ However, MET demands for security tasks vary (e.g., standing, walking, responding to emergencies), generally ranging from 2.5 to 3.5 METs, making the observed levels functionally adequate and not impede task performance.²⁸

The result of bivariate analysis identified BMI and physical activity as significant predictors of VO₂ max. After multivariate analysis using linear regression and including age, only BMI (*P*=0.005) remained significant. These findings are consistent with Buttar et al's study which reported significant differences in VO₂ max by sex and BMI.²⁶ BMI negatively influences VO₂ max. Higher adiposity is associated with lower cardiorespiratory fitness, likely due to reduced lean muscle mass and increased fat percentage.^{29–31}

In reaction time measurement, the means for visual and auditory were within the normal range

(150–240 ms), with the auditory reaction time significantly faster. These findings are supported by Jain et al who observed shorter auditory than visual reaction times in medical students.³² A study reported that auditory reaction times to sport-specific stimuli were 20–40 ms faster than visual ones, despite the longer physical transmission of sound. This advantage reflects the brain's faster auditory processing and more direct motor pathway activation compared to the broader cortical engagement required for visual input.³³

Based on the correlation test of VO_2 max with visual reaction time, there was a negative correlation and a statistically significant (r = -0.340; P = 0.048), but not with auditory reaction time (r = -0.245; P = 0.169). These results align with studies showing that higher aerobic capacity improves cognitive speed and reaction time via enhanced cerebral oxygenation.³⁴

Jain et al also reported that significantly faster reaction times were observed in physically active individuals than in sedentary individuals. While Shivalingaiah et al observed that VO₂ max negatively correlated with auditory and visual reaction times among runners.^{8,32} Moreover, a recent meta-analysis found that acute aerobic exercise produces broad improvements in cognitive functions, including enhancements in reaction time and task accuracy.³⁵

Similarly, Liu et al suggested that an increase in cerebral blood flow may mediate the exercise-induced improvements in executive function observed in young people.³⁶ In contrast, Dewi et al reported delayed reaction times and cognitive decline in taxi drivers with COPD.³⁷

The weaker and nonsignificant results of auditory correlation in this study can be due to stimulus variability or the small sample size, which reduces statistical power. Differences in sensory processing between visual and auditory stimuli may also contribute to inconsistent correlation patterns.

LIMITATION

This study has several limitations. First, the cross-sectional design only allows for the identification of associations between variables.

without establishing causal relationships. Second, BMI was not complemented with body composition analysis, preventing assessment of muscle mass and fat percentage. Lastly, auditory reaction time measurements did not include screening for hearing impairments, which may have affected the accuracy of the results.

CONCLUSION

In this study, predicted VO₂ max was not strongly but significantly associated with faster visual reaction time among security guards. Meanwhile, no significant correlation was found with auditory reaction time. Task performance was not impaired in the participants, as their MET capacity was appropriate for the physical demands of their duties (mean MET participants 5.2±0.8; MET requirements 2.5-3.5). Interventions targeting smoking cessation and weight management are recommended, not only to improve VO2 max, but also to reduce the risk of smoking- and obesity-related diseases and to enhance overall quality of life. Future studies should investigate this relationship across diverse occupational groups, incorporate fatigue-related variables such as pre- and post-shift assessments, and explore alternative VO2 max measurement methods (e.g., the Rockport test).

ACKNOWLEDGMENTS

None.

CONFLICT OF INTEREST

The authors declare no conflicts of interest in the research, its funding, or the publication of this scientific article.

FUNDING

None.

REFERENCES

 Balakrishnan G, Uppinakudru G, Girwar Singh G, Bangera S, Dutt Raghavendra A, Thangavel

- D. A comparative study on visual choice reaction time for different colors in females. Neurol Res Int. 2014;2014:301473.
- Lakshminarayanan K, Ramu V, Rajendran J, Chandrasekaran KP, Shah R, Daulat SR, et al. The effect of tactile imagery training on reaction time in healthy participants. Brain Sci. 2023;13(2):321.
- Batra A, Vyas S, Gupta J, Gupta K, Hada R. A comparative study between young and elderly indian males on audio-visual reaction time. Indian Journal of Scientific Research and Technology. 2014;2:25–9.
- Reigal RE, Barrero S, Martín I, Morales-Sánchez V, Juárez-Ruiz de Mier R, Hernández-Mendo A. Relationships between reaction time, selective attention, physical activity, and physical fitness in children. Front Psychol. 2019;10:2278.
- Kuang S. Is reaction time an index of white matter connectivity during training? Cogn Neurosci. 2017;8(2):126–8.
- Frontline Patrol. Importance of security services for businesses [Internet]. 2020 [cited 2024 Apr 1]. Available from: https://medium.com/@frontlinepatrolusa/impor tance-of-security-services-for-businesses-8cbee1fb1b
- 7. Singh SS, Bhat A, Mohapatra AK, Manu MK, Vaishali K. Comparison of reaction time and functional balance in chronic obstructive pulmonary disease and healthy participants. Heart and Lung. 2019;48(6):570–3.
- Wadoo, OK. Syeed SI. Comparative study of simple and choice visual reaction time in young adults. International Journal of Research and Review. 2019;6(6):337–40.
- Baayen RH, Milin P. Analyzing reaction times.
 Int J Psychol Res (Medellin). 2010;3(2):12–28.
- Shivalingaiah J, Vernekar SS, Naik AS, Professor A. Aerobic capacity in runners and controls, its correlation with audio visual reaction time. Original Article International Journal Of Basic And Applied Physiology Int J Basic Appl Physiol. 2018;6(1):87–96.

- Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.
- Åberg MAI, Pedersen NL, Torén K, Svartengren M, Bäckstrand B, Johnsson T, et al. Cardiovascular fitness is associated with cognition in young adulthood. Proc Natl Acad Sci U S A. 2009:106(49):20906–11.
- Santana CCA, Azevedo LB, Cattuzzo MT, Hill JO, Andrade LP, Prado WL. Physical fitness and academic performance in youth: A systematic review. Scand J Med Sci Sports. 2017;27(6):579–60.
- 14. Xu L, Gu H, Cai X, Zhang Y, Hou X, Yu J, et al. The effects of exercise for cognitive function in older adults: A systematic review and metaanalysis of randomized controlled trials. Int J Environ Res Public Health. 2023;20(2):1088.
- Janicijevic D, Garcia-Ramos A. Feasibility of volitional reaction time tests in athletes: A systematic review. Motor Control. 2022;26(2):291–314.
- Nusdwinuringtyas N, Laksmi W, Bachtiar A. Healthy adults maximum oxygen uptake prediction from a six minute walking test. Medical Journal of Indonesia. 2011;20(3):195– 200.
- 17. Jovanović J, Šarac I, Martačić JD, Oggiano GP, Despotović M, Pokimica B, et al. The influence of specific aspects of occupational stress on security guards' health and work ability: Detailed extension of a previous study. Arh Hig Rada Toksikol. 2020;71(4):359–74.
- Malavia B, Shah S. Association between the levels of physical activity and cardiorespiratory fitness among security guards. International Journal of Physiotherapy and Research. 2019;7(2):3016–21.
- Meyler S, Bottoms L, Muniz-Pumares D. Biological and methodological factors affecting VO2max response variability to endurance training and the influence of exercise intensity prescription. Exp Physiol. 2021;106(7):1410–24.

- Godinho MR, Ferreira AP, Greco RM, Teixeira LR, Teixeira MTB. Work ability and health of security guards at a public university: A crosssectional study. Rev Lat Am Enfermagem. 2016;24:e2725.
- Suminski RR, Wier LT, Poston W, Arenare B, Randles A, Jackson AS. The effect of habitual smoking on measured and predicted VO2max.
 J Phys Act Health. 2009;6(5):667–73.
- 22. Wier LT, Suminski RR, Poston WS, Randles AM, Arenare B, Jackson AS. The effect of habitual smoking on VO2max. In: Meeting: ACSM"s 55th Annual Meeting. Indianapolis: Johnson Space Center; 2008.
- 23. Pongen I, Shumayla , Dhall M, Kapoor S. Occupation, physical fitness and adiposity markers among security guards and students of Delhi University. Health N Hav. 2016;8(10):978–85.
- 24. Gibson AL, Wagner DR, Heyward VH. Advanced fitness assessment and exercise prescription. 8th ed. Maloney M, McEntire C, Stahl A, editors. Advanced Fitness Assessment and Exercise Prescription. Champaign: Human Kinetics; 2019.
- 25. Santausa FM. Korelasi nilai prediksi ambilan oksigen maksimal dari uji jalan enam menit dengan waktu fonasi maksimal pada dewasa sehat sedenter bukan penyanyi. [Depok]: Universitas Indonesia; 2021.
- 26. Buttar KK, Kacker S, Saboo N. Normative data of maximal oxygen consumption (vo2 max) among healthy young adults: A cross-sectional study. Journal of Clinical and Diagnostic Research. 2022;16(7):31–4.
- Nusdwinuringtyas N, Tambunan TFU, Yunus F, Kamelia T. Six minute walk test: Maximum capacity prediction instrument for Mongoloid adults with COPD. Indonesian Journal of Chest Critical and Emergency Medicine. 2020;7(2):1–7.
- 28. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: An update of activity codes

- and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498-504.
- Shirur SY, L R, N SH. Study of relationship between cardiorespiratory fitness and blood pressure in young obese individuals. International Journal of Recent Trends in Science and Technology. 2014;4(4):57–60.
- Kim TN, Park MS, Kim YJ, Lee EJ, Kim MK, Kim JM, et al. Association of low muscle mass and combined low muscle mass and visceral obesity with low cardiorespiratory fitness. PLoS One. 2014;9(6):e100118.
- Vivek, Mk A, Nagalakshmi, Basavaraju. Effect of body mass index on peak oxygen consumption (VO2 max) in young healthy males. Scholars International Journal of Anatomy and Physiology Abbreviated Key Title: Sch Int J Anat Physiol. 2021;4(6):86–9.
- 32. Jain A, Bansal R, Kumar A, Singh K. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int J Appl Basic Med Res. 2015;5(2):124–7.
- Hülsdünker T, Riedel D, Käsbauer H, Ruhnow D, Mierau A. Auditory information accelerates the visuomotor reaction speed of elite badminton players in multisensory environments. Front Hum Neurosci. 2021;15:779343.
- 34. Maghsoudipour M, Shabani H, Najafabadi MG, Bakhshi E, Coh P. The relationship between emotional intelligence, reaction time, aerobic capacity and performance in female track and field athletes at the Universities of Tehran. Work. 2018;61(2):173–9.
- Ishihara T, Drollette ES, Ludyga S, Hillman CH, Kamijo K. The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neurosci Biobehav Rev. 2021;128:258–69.
- 36. Liu J, Min L, Liu R, Zhang X, Wu M, Di Q, et al. The effect of exercise on cerebral blood flow and executive function among young adults: A

- double-blinded randomized controlled trial. Sci Rep. 2023;13(1):8269.
- 37. Dewi NR. Perbandingan waktu reaksi kelompok penyakit paru obstruktif kronik dan bukan penyakit paru obstruktif kronik pada pengemudi taksi PT "X"di Jakarta. [Depok]: Universitas Indonesia; 2019.